Paper 1, Section II, J

Applied Probability
Part II, 2011

(i) Let XX be a Markov chain with finitely many states. Define a stopping time and state the strong Markov property.

(ii) Let XX be a Markov chain with state-space {1,0,1}\{-1,0,1\} and Q-matrix

Q=((q+λ)λq000qλ(q+λ)), where q,λ>0Q=\left(\begin{array}{ccc} -(q+\lambda) & \lambda & q \\ 0 & 0 & 0 \\ q & \lambda & -(q+\lambda) \end{array}\right), \text { where } q, \lambda>0

Consider the integral 0tX(s)ds\int_{0}^{t} X(s) \mathrm{d} s, the signed difference between the times spent by the chain at states +1+1 and 1-1 by time tt, and let

Y=sup[0tX(s)ds:t>0]ψ±(c)=P(Y>cX0=±1),c>0\begin{aligned} Y &=\sup \left[\int_{0}^{t} X(s) \mathrm{d} s: t>0\right] \\ \psi_{\pm}(c) &=\mathbb{P}\left(Y>c \mid X_{0}=\pm 1\right), \quad c>0 \end{aligned}

Derive the equation

ψ(c)=0qe(λ+q)u+ψ+(c+u)du\psi_{-}(c)=\int_{0}^{\infty} q e^{-(\lambda+q) u_{+}} \psi_{+}(c+u) \mathrm{d} u

(iii) Obtain another equation relating ψ+\psi_{+}to ψ\psi_{-}.

(iv) Assuming that ψ+(c)=ecA,c>0\psi_{+}(c)=e^{-c A}, c>0, where AA is a non-negative constant, calculate AA.

(v) Give an intuitive explanation why the function ψ+\psi_{+}must have the exponential form ψ+(c)=ecA\psi_{+}(c)=e^{-c A} for some AA.