Paper 2, Section II, 26 K26 \mathrm{~K}

Probability and Measure
Part II, 2011

(i) Define the notions of a π\pi-system and a dd-system. State and prove Dynkin's lemma.

(ii) Let (E1,E1,μ1)\left(E_{1}, \mathcal{E}_{1}, \mu_{1}\right) and (E2,E2,μ2)\left(E_{2}, \mathcal{E}_{2}, \mu_{2}\right) denote two finite measure spaces. Define the σ\sigma algebra E1E2\mathcal{E}_{1} \otimes \mathcal{E}_{2} and the product measure μ1μ2\mu_{1} \otimes \mu_{2}. [You do not need to verify that such a measure exists.] State (without proof) Fubini's Theorem.

(iii) Let (E,E,μ)(E, \mathcal{E}, \mu) be a measure space, and let ff be a non-negative Borel-measurable function. Let GG be the subset of E×RE \times \mathbb{R} defined by

G={(x,y)E×R:0yf(x)}G=\{(x, y) \in E \times \mathbb{R}: 0 \leqslant y \leqslant f(x)\}

Show that GEB(R)G \in \mathcal{E} \otimes \mathcal{B}(\mathbb{R}), where B(R)\mathcal{B}(\mathbb{R}) denotes the Borel σ\sigma-algebra on R\mathbb{R}. Show further that

fdμ=(μλ)(G)\int f d \mu=(\mu \otimes \lambda)(G)

where λ\lambda is Lebesgue measure.