Paper 2, Section II, J
(i) Explain briefly what is meant by saying that a continuous-time Markov chain is a birth-and-death process with birth rates , and death rates , .
(ii) In the case where is recurrent, find a sufficient condition on the birth and death parameters to ensure that
and express in terms of these parameters. State the reversibility property of .
Jobs arrive according to a Poisson process of rate . They are processed individually, by a single server, the processing times being independent random variables, each with the exponential distribution of rate . After processing, the job either leaves the system, with probability , or, with probability , it splits into two separate jobs which are both sent to join the queue for processing again. Let denote the number of jobs in the system at time .
(iii) In the case , evaluate , and find the expected time that the processor is busy between two successive idle periods.
(iv) What happens if ?