Paper 2, Section II, J

Stochastic Financial Models
Part II, 2011

Consider a symmetric simple random walk (Zn)nZ+\left(Z_{n}\right)_{n \in \mathbb{Z}^{+}}taking values in statespace I=hZ2{(ih,jh):i,jZ}I=h \mathbb{Z}^{2} \equiv\{(i h, j h): i, j \in \mathbb{Z}\}, where hN1(Nh \equiv N^{-1}(N an integer )). Writing Zn(Xn,Yn)Z_{n} \equiv\left(X_{n}, Y_{n}\right), the transition probabilities are given by

P(ΔZn=(h,0))=P(ΔZn=(0,h))=P(ΔZn=(h,0))=P(ΔZn=(0,h))=14,P\left(\Delta Z_{n}=(h, 0)\right)=P\left(\Delta Z_{n}=(0, h)\right)=P\left(\Delta Z_{n}=(-h, 0)\right)=P\left(\Delta Z_{n}=(0,-h)\right)=\frac{1}{4},

where ΔZnZnZn1\Delta Z_{n} \equiv Z_{n}-Z_{n-1}.

What does it mean to say that (Mn,Fn)nZ+\left(M_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{Z}^{+}}is a martingale? Find a condition on θ\theta and λ\lambda such that

Mn=exp(θXnλYn)M_{n}=\exp \left(\theta X_{n}-\lambda Y_{n}\right)

is a martingale. If θ=iα\theta=i \alpha for some real α\alpha, show that MM is a martingale if

eλh=2cos(αh)(2cos(αh))21e^{-\lambda h}=2-\cos (\alpha h)-\sqrt{(2-\cos (\alpha h))^{2}-1}

Suppose that the random walk ZZ starts at position (0,1)(0,Nh)(0,1) \equiv(0, N h) at time 0 , and suppose that

τ=inf{n:Yn=0}.\tau=\inf \left\{n: Y_{n}=0\right\} .

Stating fully any results to which you appeal, prove that

Eexp(iαXτ)=eλE \exp \left(i \alpha X_{\tau}\right)=e^{-\lambda}

where λ\lambda is as given at ()(*). Deduce that as NN \rightarrow \infty

Eexp(iαXτ)eαE \exp \left(i \alpha X_{\tau}\right) \rightarrow e^{-|\alpha|}

and comment briefly on this result.