Paper 3, Section I, F

Topics in Analysis
Part II, 2011

Let Γ={zC:z1,Re(z)+Im(z)=1}\Gamma=\{z \in \mathbb{C}: z \neq 1,|\operatorname{Re}(z)|+|\operatorname{Im}(z)|=1\}.

(i) Prove that, for any ζC\zeta \in \mathbb{C} with Re(ζ)+Im(ζ)>1|\operatorname{Re}(\zeta)|+|\operatorname{Im}(\zeta)|>1 and any ϵ>0\epsilon>0, there exists a complex polynomial pp such that

supzΓp(z)(zζ)1<ϵ\sup _{z \in \Gamma}\left|p(z)-(z-\zeta)^{-1}\right|<\epsilon

(ii) Does there exist a sequence of polynomials pnp_{n} such that pn(z)(z1)1p_{n}(z) \rightarrow(z-1)^{-1} for every zΓ?z \in \Gamma ? Justify your answer.