Paper 4, Section I, 2F2 F

Topics in Analysis
Part II, 2011

(a) Let γ:[0,1]C\{0}\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\} be a continuous map such that γ(0)=γ(1)\gamma(0)=\gamma(1). Define the winding number w(γ;0)w(\gamma ; 0) of γ\gamma about the origin. State precisely a theorem about homotopy invariance of the winding number.

(b) Let B={zC:z1}B=\{z \in \mathbb{C}:|z| \leqslant 1\} and let f:BCf: B \rightarrow \mathbb{C} be a continuous map satisfying

f(z)z1|f(z)-z| \leqslant 1

for each zBz \in \partial B.

(i) For 0t10 \leqslant t \leqslant 1, let γ(t)=f(e2πit)\gamma(t)=f\left(e^{2 \pi i t}\right). If γ(t)0\gamma(t) \neq 0 for each t[0,1]t \in[0,1], prove that w(γ;0)=1w(\gamma ; 0)=1.

[Hint: Consider a suitable homotopy between γ\gamma and the map γ1(t)=e2πit\gamma_{1}(t)=e^{2 \pi i t}, 0t1.]0 \leqslant t \leqslant 1 .]

(ii) Deduce that f(z)=0f(z)=0 for some zBz \in B.