Paper 2, Section II, F

Topics in Analysis
Part II, 2011

Let C[0,1]C[0,1] be the space of real continuous functions on the interval [0,1][0,1]. A mapping L:C[0,1]C[0,1]L: C[0,1] \rightarrow C[0,1] is said to be positive if L(f)0L(f) \geqslant 0 for each fC[0,1]f \in C[0,1] with f0f \geqslant 0, and linear if L(af+bg)=aL(f)+bL(g)L(a f+b g)=a L(f)+b L(g) for all functions f,gC[0,1]f, g \in C[0,1] and constants a,bRa, b \in \mathbb{R}.

(i) Let Ln:C[0,1]C[0,1]L_{n}: C[0,1] \rightarrow C[0,1] be a sequence of positive, linear mappings such that Ln(f)fL_{n}(f) \rightarrow f uniformly on [0,1][0,1] for the three functions f(x)=1,x,x2f(x)=1, x, x^{2}. Prove that Ln(f)fL_{n}(f) \rightarrow f uniformly on [0,1][0,1] for every fC[0,1]f \in C[0,1].

(ii) Define Bn:C[0,1]C[0,1]B_{n}: C[0,1] \rightarrow C[0,1] by

Bn(f)(x)=k=0n(nk)f(kn)xk(1x)nkB_{n}(f)(x)=\sum_{k=0}^{n}\left(\begin{array}{l} n \\ k \end{array}\right) f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k}

where (nk)=n!k!(nk)!\left(\begin{array}{l}n \\ k\end{array}\right)=\frac{n !}{k !(n-k) !}. Using the result of part (i), or otherwise, prove that Bn(f)fB_{n}(f) \rightarrow f uniformly on [0,1][0,1].

(iii) Let fC[0,1]f \in C[0,1] and suppose that

01f(x)x4ndx=0\int_{0}^{1} f(x) x^{4 n} d x=0

for each n=0,1,n=0,1, \ldots Prove that ff must be the zero function.

[You should not use the Stone-Weierstrass theorem without proof.]