Paper 1, Section I, C

Classical Dynamics
Part II, 2011

(i) A particle of mass mm and charge qq, at position x\mathbf{x}, moves in an electromagnetic field with scalar potential ϕ(x,t)\phi(\mathbf{x}, t) and vector potential A(x,t)\mathbf{A}(\mathbf{x}, t). Verify that the Lagrangian

L=12mx˙2q(ϕx˙A)L=\frac{1}{2} m \dot{\mathbf{x}}^{2}-q(\phi-\dot{\mathbf{x}} \cdot \mathbf{A})

gives the correct equations of motion.

[Note that E=ϕA˙\mathbf{E}=-\nabla \phi-\dot{\mathbf{A}} and B=×A\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}.]

(ii) Consider the case of a constant uniform magnetic field, with E=0\mathbf{E}=\mathbf{0}, given by ϕ=0\phi=0, A=(0,xB,0)\mathbf{A}=(0, x B, 0), where (x,y,z)(x, y, z) are Cartesian coordinates and BB is a constant. Find the motion of the particle, and describe it carefully.