Paper 3, Section II, H

Algebraic Geometry
Part II, 2011

Let XX be a smooth projective curve over an algebraically closed field kk of characteristic 0 .

(i) Let DD be a divisor on XX.

Define L(D)\mathcal{L}(D), and show dimL(D)degD+1\operatorname{dim} \mathcal{L}(D) \leqslant \operatorname{deg} D+1.

(ii) Define the space of rational differentials Ωk(X)/k1\Omega_{k(X) / k}^{1}.

If pp is a point on XX, and tt a local parameter at pp, show that Ωk(X)/k1=k(X)dt\Omega_{k(X) / k}^{1}=k(X) d t.

Use that equality to give a definition of vp(ω)Zv_{p}(\omega) \in \mathbb{Z}, for ωΩk(X)/k1,pX\omega \in \Omega_{k(X) / k}^{1}, p \in X. [You need not show that your definition is independent of the choice of local parameter.]