Paper 4, Section II, C

Classical Dynamics
Part II, 2011

Given a Hamiltonian system with variables (qi,pi),i=1,,n\left(q_{i}, p_{i}\right), i=1, \ldots, n, state the definition of a canonical transformation

(qi,pi)(Qi,Pi),\left(q_{i}, p_{i}\right) \rightarrow\left(Q_{i}, P_{i}\right),

where Q=Q(q,p,t)\mathbf{Q}=\mathbf{Q}(\mathbf{q}, \mathbf{p}, t) and P=P(q,p,t)\mathbf{P}=\mathbf{P}(\mathbf{q}, \mathbf{p}, t). Write down a matrix equation that is equivalent to the condition that the transformation is canonical.

Consider a harmonic oscillator of unit mass, with Hamiltonian

H=12(p2+ω2q2).H=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right) .

Write down the Hamilton-Jacobi equation for Hamilton's principal function S(q,E,t)S(q, E, t), and deduce the Hamilton-Jacobi equation

12[(Wq)2+ω2q2]=E\frac{1}{2}\left[\left(\frac{\partial W}{\partial q}\right)^{2}+\omega^{2} q^{2}\right]=E

for Hamilton's characteristic function W(q,E)W(q, E).

Solve (1) to obtain an integral expression for WW, and deduce that, at energy EE,

S=2Edq(1ω2q22E)EtS=\sqrt{2 E} \int d q \sqrt{\left(1-\frac{\omega^{2} q^{2}}{2 E}\right)}-E t

Let α=E\alpha=E, and define the angular coordinate

β=(SE)q,t\beta=\left(\frac{\partial S}{\partial E}\right)_{q, t}

You may assume that (2) implies

t+β=(1ω)arcsin(ωq2E)t+\beta=\left(\frac{1}{\omega}\right) \arcsin \left(\frac{\omega q}{\sqrt{2 E}}\right)

Deduce that

p=Sq=Wq=(2Eω2q2)p=\frac{\partial S}{\partial q}=\frac{\partial W}{\partial q}=\sqrt{\left(2 E-\omega^{2} q^{2}\right)}

from which

p=2Ecos[ω(t+β)].p=\sqrt{2 E} \cos [\omega(t+\beta)] .

Hence, or otherwise, show that the transformation from variables (q,p)(q, p) to (α,β)(\alpha, \beta) is canonical.