Paper 2, Section I, C

Dynamical Systems
Part II, 2011

State the Poincaré-Bendixson theorem for two-dimensional dynamical systems.

A dynamical system can be written in polar coordinates (r,θ)(r, \theta) as

r˙=rr3(1+αcosθ)θ˙=1r2βcosθ\begin{aligned} &\dot{r}=r-r^{3}(1+\alpha \cos \theta) \\ &\dot{\theta}=1-r^{2} \beta \cos \theta \end{aligned}

where α\alpha and β\beta are constants with 0<α<10<\alpha<1.

Show that trajectories enter the annulus (1+α)1/2<r<(1α)1/2(1+\alpha)^{-1 / 2}<r<(1-\alpha)^{-1 / 2}.

Show that if there is a fixed point (r0,θ0)\left(r_{0}, \theta_{0}\right) inside the annulus then r02=(βα)/βr_{0}^{2}=(\beta-\alpha) / \beta and cosθ0=1/(βα)\cos \theta_{0}=1 /(\beta-\alpha).

Use the Poincaré-Bendixson theorem to derive conditions on β\beta that guarantee the existence of a periodic orbit.