Paper 1, Section II, C

Electrodynamics
Part II, 2011

In the Landau-Ginzburg model of superconductivity, the energy of the system is given, for constants α\alpha and β\beta, by

E={12μ0B2+12m[(iqA)ψ(iqA)ψ]+αψψ+β(ψψ)2}d3x,E=\int\left\{\frac{1}{2 \mu_{0}} \mathbf{B}^{2}+\frac{1}{2 m}\left[(i \hbar \nabla-q \mathbf{A}) \psi^{*} \cdot(-i \hbar \nabla-q \mathbf{A}) \psi\right]+\alpha \psi^{*} \psi+\beta\left(\psi^{*} \psi\right)^{2}\right\} d^{3} \mathbf{x},

where B\mathbf{B} is the time-independent magnetic field derived from the vector potential A\mathbf{A}, and ψ\psi is the wavefunction of the charge carriers, which have mass mm and charge qq.

Describe the physical meaning of each of the terms in the integral.

Explain why in a superconductor one must choose α<0\alpha<0 and β>0\beta>0. Find an expression for the number density nn of the charge carriers in terms of α\alpha and β\beta.

Show that the energy is invariant under the gauge transformations

AA+Λ,ψψeiqΛ/\mathbf{A} \rightarrow \mathbf{A}+\nabla \Lambda, \quad \psi \rightarrow \psi e^{i q \Lambda / \hbar}

Assuming that the number density nn is uniform, show that, if EE is a minimum under variations of A\mathbf{A}, then

curlB=μ0q2nm(Aqϕ)\operatorname{curl} \mathbf{B}=-\frac{\mu_{0} q^{2} n}{m}\left(\mathbf{A}-\frac{\hbar}{q} \nabla \phi\right)

where ϕ=argψ\phi=\arg \psi.

Find a formula for 2B\nabla^{2} \mathbf{B} and use it to explain why there cannot be a magnetic field inside the bulk of a superconductor.