Paper 3, Section II, B

Fluid Dynamics II
Part II, 2011

If Ai(xj)A_{i}\left(x_{j}\right) is harmonic, i.e. if 2Ai=0\nabla^{2} A_{i}=0, show that

ui=AixkAkxi, with p=2μAnxn,u_{i}=A_{i}-x_{k} \frac{\partial A_{k}}{\partial x_{i}}, \quad \text { with } \quad p=-2 \mu \frac{\partial A_{n}}{\partial x_{n}},

satisfies the incompressibility condition and the Stokes equation. Show that the stress tensor is

σij=2μ(δijAnxnxk2Akxixj)\sigma_{i j}=2 \mu\left(\delta_{i j} \frac{\partial A_{n}}{\partial x_{n}}-x_{k} \frac{\partial^{2} A_{k}}{\partial x_{i} \partial x_{j}}\right)

Consider the Stokes flow corresponding to

Ai=Vi(1a2r),A_{i}=V_{i}\left(1-\frac{a}{2 r}\right),

where ViV_{i} are the components of a constant vector V\mathbf{V}. Show that on the sphere r=ar=a the normal component of velocity vanishes and the surface traction σijxj/a\sigma_{i j} x_{j} / a is in the normal direction. Hence deduce that the drag force on the sphere is given by

F=4πμaV\mathbf{F}=4 \pi \mu a \mathbf{V}