Show that the following integral is well defined:
I(a,b)=∫0∞(eiaex−1e−bx−e−iaex−1ebx)dx,0<a<∞,a=2nπ,n∈Z,0<b<1
Express I(a,b) in terms of a combination of hypergeometric functions.
[You may assume without proof that the hypergeometric function F(a,b;c;z) can be expressed in the form
F(a,b;c;z)=Γ(b)Γ(c−b)Γ(c)∫01tb−1(1−t)c−b−1(1−tz)−adt
for appropriate restrictions on c,b,z. Furthermore,
Γ(z+1)=zΓ(z)⋅]