Paper 3, Section I, E

Further Complex Methods
Part II, 2011

Explain the meaning of zjz_{j} in the Weierstrass canonical product formula

f(z)=f(0)exp[f(0)f(0)z]j=1{(1zzj)ezzj}f(z)=f(0) \exp \left[\frac{f^{\prime}(0)}{f(0)} z\right] \prod_{j=1}^{\infty}\left\{\left(1-\frac{z}{z_{j}}\right) e^{\frac{z}{z_{j}}}\right\}

Show that

sin(πz)πz=n=1(1z2n2)\frac{\sin (\pi z)}{\pi z}=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)

Deduce that

πcot(πz)=1z+2n=1zz2n2\pi \cot (\pi z)=\frac{1}{z}+2 \sum_{n=1}^{\infty} \frac{z}{z^{2}-n^{2}}