Paper 3, Section I, EFurther Complex MethodsPart II, 2011Explain the meaning of zjz_{j}zj in the Weierstrass canonical product formulaf(z)=f(0)exp[f′(0)f(0)z]∏j=1∞{(1−zzj)ezzj}f(z)=f(0) \exp \left[\frac{f^{\prime}(0)}{f(0)} z\right] \prod_{j=1}^{\infty}\left\{\left(1-\frac{z}{z_{j}}\right) e^{\frac{z}{z_{j}}}\right\}f(z)=f(0)exp[f(0)f′(0)z]j=1∏∞{(1−zjz)ezjz}Show thatsin(πz)πz=∏n=1∞(1−z2n2)\frac{\sin (\pi z)}{\pi z}=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)πzsin(πz)=n=1∏∞(1−n2z2)Deduce thatπcot(πz)=1z+2∑n=1∞zz2−n2\pi \cot (\pi z)=\frac{1}{z}+2 \sum_{n=1}^{\infty} \frac{z}{z^{2}-n^{2}}πcot(πz)=z1+2n=1∑∞z2−n2z