Paper 2, Section II, H

Galois Theory
Part II, 2011

Let F=C(x,y)F=\mathbb{C}(x, y) be the function field in two variables x,yx, y. Let n1n \geqslant 1, and K=C(xn+yn,xy)K=\mathbb{C}\left(x^{n}+y^{n}, x y\right) be the subfield of FF of all rational functions in xn+ynx^{n}+y^{n} and xy.x y .

(i) Let K=K(xn)K^{\prime}=K\left(x^{n}\right), which is a subfield of FF. Show that K/KK^{\prime} / K is a quadratic extension.

(ii) Show that F/KF / K^{\prime} is cyclic of order nn, and F/KF / K is Galois. Determine the Galois groupGal(F/K)\operatorname{group} \operatorname{Gal}(F / K).