Paper 4, Section II, G

Geometry and Groups
Part II, 2011

Define a lattice in R2\mathbb{R}^{2} and the rank of such a lattice.

Let Λ\Lambda be a rank 2 lattice in R2\mathbb{R}^{2}. Choose a vector w1Λ\{0}\boldsymbol{w}_{1} \in \Lambda \backslash\{\boldsymbol{0}\} with w1\left\|\boldsymbol{w}_{1}\right\| as small as possible. Then choose w2Λ\Zw1\boldsymbol{w}_{2} \in \Lambda \backslash \mathbb{Z} \boldsymbol{w}_{1} with w2\left\|\boldsymbol{w}_{2}\right\| as small as possible. Show that Λ=Zw1+Zw2\Lambda=\mathbb{Z} \boldsymbol{w}_{1}+\mathbb{Z} \boldsymbol{w}_{2}.

Suppose that w1\boldsymbol{w}_{1} is the unit vector (10)\left(\begin{array}{l}1 \\ 0\end{array}\right). Draw the region of possible values for w2\boldsymbol{w}_{2}. Suppose that Λ\Lambda also equals Zv1+Zv2\mathbb{Z} \boldsymbol{v}_{1}+\mathbb{Z} \boldsymbol{v}_{2}. Prove that

v1=aw1+bw2 and v2=cw1+dw2\boldsymbol{v}_{1}=a \boldsymbol{w}_{1}+b \boldsymbol{w}_{2} \quad \text { and } \quad \boldsymbol{v}_{2}=c \boldsymbol{w}_{1}+d \boldsymbol{w}_{2}

for some integers a,b,c,da, b, c, d with adbc=±1a d-b c=\pm 1.