Paper 1, Section II, A

Integrable Systems
Part II, 2011

Define a finite-dimensional integrable system and state the Arnold-Liouville theorem.

Consider a four-dimensional phase space with coordinates (q1,q2,p1,p2)\left(q_{1}, q_{2}, p_{1}, p_{2}\right), where q2>0q_{2}>0 and q1q_{1} is periodic with period 2π2 \pi. Let the Hamiltonian be

H=(p1)22(q2)2+(p2)22kq2, where k>0H=\frac{\left(p_{1}\right)^{2}}{2\left(q_{2}\right)^{2}}+\frac{\left(p_{2}\right)^{2}}{2}-\frac{k}{q_{2}}, \quad \text { where } k>0

Show that the corresponding Hamilton equations form an integrable system.

Determine the sign of the constant EE so that the motion is periodic on the surface H=EH=E. Demonstrate that in this case, the action variables are given by

I1=p1,I2=γαβ(q2α)(βq2)q2dq2,I_{1}=p_{1}, \quad I_{2}=\gamma \int_{\alpha}^{\beta} \frac{\sqrt{\left(q_{2}-\alpha\right)\left(\beta-q_{2}\right)}}{q_{2}} d q_{2},

where α,β,γ\alpha, \beta, \gamma are positive constants which you should determine.