Paper 2, Section II, A

Integrable Systems
Part II, 2011

Consider the Poisson structure

{F,G}=RδFδu(x)xδGδu(x)dx\{F, G\}=\int_{\mathbb{R}} \frac{\delta F}{\delta u(x)} \frac{\partial}{\partial x} \frac{\delta G}{\delta u(x)} d x

where F,GF, G are polynomial functionals of u,ux,uxx,u, u_{x}, u_{x x}, \ldots. Assume that u,ux,uxx,u, u_{x}, u_{x x}, \ldots tend to zero as x|x| \rightarrow \infty.

(i) Show that {F,G}={G,F}\{F, G\}=-\{G, F\}.

(ii) Write down Hamilton's equations for u=u(x,t)u=u(x, t) corresponding to the following Hamiltonians:

H0[u]=R12u2dx,H[u]=R(12ux2+u3+uux)dxH_{0}[u]=\int_{\mathbb{R}} \frac{1}{2} u^{2} d x, \quad H[u]=\int_{\mathbb{R}}\left(\frac{1}{2} u_{x}^{2}+u^{3}+u u_{x}\right) d x

(iii) Calculate the Poisson bracket {H0,H}\left\{H_{0}, H\right\}, and hence or otherwise deduce that the following overdetermined system of partial differential equations for u=u(x,t0,t)u=u\left(x, t_{0}, t\right) is compatible:

ut0=uxut=6uuxuxxx\begin{gathered} u_{t_{0}}=u_{x} \\ u_{t}=6 u u_{x}-u_{x x x} \end{gathered}

[You may assume that the Jacobi identity holds for (1).]

(iv) Find a symmetry of (3) generated by X=/u+αt/xX=\partial / \partial u+\alpha t \partial / \partial x for some constant αR\alpha \in \mathbb{R} which should be determined. Construct a vector field YY corresponding to the one parameter group

xβx,tγt,uδu,x \rightarrow \beta x, \quad t \rightarrow \gamma t, \quad u \rightarrow \delta u,

where (β,γ,δ)(\beta, \gamma, \delta) should be determined from the symmetry requirement. Find the Lie algebra generated by the vector fields (X,Y)(X, Y).