Paper 1, Section II, E

Applications of Quantum Mechanics
Part II, 2011

In one dimension a particle of mass mm and momentum k,k>0\hbar k, k>0, is scattered by a potential V(x)V(x) where V(x)0V(x) \rightarrow 0 as x|x| \rightarrow \infty. Incoming and outgoing plane waves of positive (+)(+) and negative ()(-) parity are given, respectively, by

I+(k,x)=eikx,I(k,x)=sgn(x)eikxO+(k,x)=eikx,O(k,x)=sgn(x)eikx\begin{array}{ll} I_{+}(k, x)=e^{-i k|x|}, & I_{-}(k, x)=\operatorname{sgn}(x) e^{-i k|x|} \\ O_{+}(k, x)=e^{i k|x|}, & O_{-}(k, x)=-\operatorname{sgn}(x) e^{i k|x|} \end{array}

The scattering solutions to the time-independent Schrödinger equation with positive and negative parity incoming waves are ψ+(x)\psi_{+}(x) and ψ(x)\psi_{-}(x), respectively. State how the asymptotic behaviour of ψ+\psi_{+}and ψ\psi_{-}can be expressed in terms of I+,I,O+,OI_{+}, I_{-}, O_{+}, O_{-}and the S-matrix denoted by

S=(S++S+S+S)\boldsymbol{S}=\left(\begin{array}{cc} S_{++} & S_{+-} \\ S_{-+} & S_{--} \end{array}\right)

In the case where V(x)=V(x)V(x)=V(-x) explain briefly why you expect S+=S+=0S_{+-}=S_{-+}=0.

The potential V(x)V(x) is given by

V(x)=V0[δ(xa)+δ(x+a)]V(x)=V_{0}[\delta(x-a)+\delta(x+a)]

where V0V_{0} is a constant. In this case, show that

S(k)=e2ika[(2kiU0)eika+iU0eika(2k+iU0)eikaiU0eika]S_{--}(k)=e^{-2 i k a}\left[\frac{\left(2 k-i U_{0}\right) e^{i k a}+i U_{0} e^{-i k a}}{\left(2 k+i U_{0}\right) e^{-i k a}-i U_{0} e^{i k a}}\right]

where U0=2mV0/2U_{0}=2 m V_{0} / \hbar^{2}. Verify that S2=1\left|S_{--}\right|^{2}=1 and explain briefly the physical meaning of this result.

For V0<0V_{0}<0, by considering the poles or zeros of S(k)S_{--}(k) show that there exists one bound state of negative parity in this potential if U0a<1U_{0} a<-1.

For V0>0V_{0}>0 and U0a1U_{0} a \gg 1, show that S(k)S_{--}(k) has a pole at

ka=π+αiγk a=\pi+\alpha-i \gamma

where, to leading order in 1/(U0a)1 /\left(U_{0} a\right),

α=πU0a,γ=(πU0a)2\alpha=-\frac{\pi}{U_{0} a}, \quad \gamma=\left(\frac{\pi}{U_{0} a}\right)^{2}

Explain briefy the physical meaning of this result, and why you expect that γ>0\gamma>0.