Paper 2, Section II, G

Linear Analysis
Part II, 2011

State and prove the Baire Category Theorem. Let f:RRf: \mathbb{R} \rightarrow \mathbb{R} be a function. For xRx \in \mathbb{R}, define

ωf(x)=infδ>0supyxδyxδf(y)f(y)\omega_{f}(x)=\inf _{\delta>0} \sup _{\substack{|y-x| \leqslant \delta \\\left|y^{\prime}-x\right| \leqslant \delta}}\left|f(y)-f\left(y^{\prime}\right)\right|

Show that ff is continuous at xx if and only if ωf(x)=0\omega_{f}(x)=0.

Show that for any ϵ>0\epsilon>0 the set {xR:ωf(x)<ϵ}\left\{x \in \mathbb{R}: \omega_{f}(x)<\epsilon\right\} is open.

Hence show that the set of points at which ff is continuous cannot be precisely the set Q\mathbb{Q} of rationals.