Paper 3, Section II, G

Linear Analysis
Part II, 2011

Let HH be a complex Hilbert space with orthonormal basis (en)n=\left(e_{n}\right)_{n=-\infty}^{\infty} Let T:HHT: H \rightarrow H be a bounded linear operator. What is meant by the spectrum σ(T)\sigma(T) of TT ?

Define TT by setting T(en)=en1+en+1T\left(e_{n}\right)=e_{n-1}+e_{n+1} for nZn \in \mathbb{Z}. Show that TT has a unique extension to a bounded, self-adjoint linear operator on HH. Determine the norm T\|T\|. Exhibit, with proof, an element of σ(T)\sigma(T).

Show that TT has no eigenvectors. Is TT compact?

[General results from spectral theory may be used without proof. You may also use the fact that if a sequence (xn)\left(x_{n}\right) satisfies a linear recurrence λxn=xn1+xn+1\lambda x_{n}=x_{n-1}+x_{n+1} with λR\lambda \in \mathbb{R}, λ2,λ0|\lambda| \leqslant 2, \lambda \neq 0, then it has the form xn=Aαnsin(θ1n+θ2)x_{n}=A \alpha^{n} \sin \left(\theta_{1} n+\theta_{2}\right) or xn=(A+nB)αnx_{n}=(A+n B) \alpha^{n}, where A,B,αRA, B, \alpha \in \mathbb{R} and 0θ1<π,θ2π/20 \leqslant \theta_{1}<\pi,\left|\theta_{2}\right| \leqslant \pi / 2.]