Paper 2, Section II, E

Applications of Quantum Mechanics
Part II, 2011

A beam of particles of mass mm and momentum p=kp=\hbar k, incident along the zz-axis, is scattered by a spherically symmetric potential V(r)V(r), where V(r)=0V(r)=0 for large rr. State the boundary conditions on the wavefunction as rr \rightarrow \infty and hence define the scattering amplitude f(θ)f(\theta), where θ\theta is the scattering angle.

Given that, for large rr,

eikrcosθ=12ikrl=0(2l+1)(eikr(1)leikr)Pl(cosθ)e^{i k r \cos \theta}=\frac{1}{2 i k r} \sum_{l=0}^{\infty}(2 l+1)\left(e^{i k r}-(-1)^{l} e^{-i k r}\right) P_{l}(\cos \theta)

explain how the partial-wave expansion can be used to define the phase shifts δl(k)(l=\delta_{l}(k)(l= 0,1,2,)0,1,2, \ldots). Furthermore, given that dσ/dΩ=f(θ)2d \sigma / d \Omega=|f(\theta)|^{2}, derive expressions for f(θ)f(\theta) and the total cross-section σ\sigma in terms of the δl\delta_{l}.

In a particular case V(r)V(r) is given by

V(r)={,r<aV0,a<r<2a0,r>2aV(r)=\left\{\begin{array}{cl} \infty, & r<a \\ -V_{0}, & a<r<2 a \\ 0, & r>2 a \end{array}\right.

where V0>0V_{0}>0. Show that the S\mathrm{S}-wave phase shift δ0\delta_{0} satisfies

tan(δ0)=kcos(2ka)κcot(κa)sin(2ka)ksin(2ka)+κcot(κa)cos(2ka),\tan \left(\delta_{0}\right)=\frac{k \cos (2 k a)-\kappa \cot (\kappa a) \sin (2 k a)}{k \sin (2 k a)+\kappa \cot (\kappa a) \cos (2 k a)},

where κ2=2mV0/2+k2\kappa^{2}=2 m V_{0} / \hbar^{2}+k^{2}.

Derive an expression for the scattering length asa_{s} in terms of κ\kappa. Find the values of κ\kappa for which as\left|a_{s}\right| diverges and briefly explain their physical significance.