Paper 4, Section II, I

Number Theory
Part II, 2012

Let f:NRf: \mathbb{N} \rightarrow \mathbb{R} be a function, where N\mathbb{N} denotes the (positive) natural numbers.

Define what it means for ff to be a multiplicative function.

Prove that if ff is a multiplicative function, then the function g:NRg: \mathbb{N} \rightarrow \mathbb{R} defined by

g(n)=dnf(d)g(n)=\sum_{d \mid n} f(d)

is also multiplicative.

Define the Möbius function μ\mu. Is μ\mu multiplicative? Briefly justify your answer.

Compute

dnμ(d)\sum_{d \mid n} \mu(d)

for all positive integers nn.

Define the Riemann zeta function ζ\zeta for complex numbers ss with (s)>1\Re(s)>1.

Prove that if ss is a complex number with (s)>1\Re(s)>1, then

1ζ(s)=n=1μ(n)ns\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}