Paper 3 , Section II, I

Number Theory
Part II, 2012

Let pp be an odd prime. Prove that the multiplicative groups (Z/pnZ)×\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}are cyclic for n2n \geqslant 2. [You may assume that the multiplicative group (Z/pZ)×(\mathbb{Z} / p \mathbb{Z})^{\times}is cyclic.]

Find an integer which generates (Z/7nZ)×\left(\mathbb{Z} / 7^{n} \mathbb{Z}\right)^{\times}for all n1n \geqslant 1, justifying your answer.