Paper 1, Section II, D

Numerical Analysis
Part II, 2012

The Poisson equation uxx=fu_{x x}=f in the unit interval Ω=[0,1],u=0\Omega=[0,1], u=0 on Ω\partial \Omega is discretised with the formula

ui1+ui+12ui=h2fiu_{i-1}+u_{i+1}-2 u_{i}=h^{2} f_{i}

where 1in,uiu(ih)1 \leqslant i \leqslant n, u_{i} \approx u(i h) and ihi h are the grid points.

(i) Define the above system of equations in vector form Au=bA \mathbf{u}=\mathbf{b} and describe the relaxed Jacobi method with relaxation parameter ω\omega for solving this linear system. For x\mathbf{x}^{*} and x(ν)\mathbf{x}^{(\nu)} being the exact solution and the iterated solution respectively, let e(ν)=x(ν)x\mathbf{e}^{(\nu)}=\mathbf{x}^{(\nu)}-\mathbf{x}^{*} be the error and HωH_{\omega} the iteration matrix, so that

e(ν+1)=Hωe(ν)\mathbf{e}^{(\nu+1)}=H_{\omega} \mathbf{e}^{(\nu)}

Express HωH_{\omega} in terms of the matrix AA, the diagonal part DD of AA and ω\omega, and find the eigenvectors vk\mathbf{v}_{k} and the eigenvalues λk(ω)\lambda_{k}(\omega) of HωH_{\omega}.

(ii) For AA as above, let

e(ν)=k=1nak(ν)vk\mathbf{e}^{(\nu)}=\sum_{k=1}^{n} a_{k}^{(\nu)} \mathbf{v}_{k}

be the expansion of the error with respect to the eigenvectors of HωH_{\omega}. Derive conditions on ω\omega such that the method converges for any nn, and prove that, for any such ω\omega, the rate of convergence of e(ν)0\mathbf{e}^{(\nu)} \rightarrow 0 is not faster than (1c/n2)ν\left(1-c / n^{2}\right)^{\nu}.

(iii) Show that, for some ω\omega, the high frequency components (n+12kn)\left(\frac{n+1}{2} \leqslant k \leqslant n\right) of the error e(ν)\mathbf{e}^{(\nu)} tend to zero much faster than (1c/n2)ν\left(1-c / n^{2}\right)^{\nu}. Determine the optimal parameter ω\omega_{*} which provides the largest suppression of the high frequency components per iteration, and find the corresponding attenuation factor μ\mu_{*} (i.e., the least μω\mu_{\omega} such that ak(ν+1)μωak(ν)\left|a_{k}^{(\nu+1)}\right| \leqslant \mu_{\omega}\left|a_{k}^{(\nu)}\right| for n+12kn)\left.\frac{n+1}{2} \leqslant k \leqslant n\right).