Paper 4, Section II, 30B

Partial Differential Equations
Part II, 2012

i) State the Lax-Milgram lemma.

ii) Consider the boundary value problem

Δ2uΔu+u=f in Ωu=uγ=0 on Ω\begin{aligned} \Delta^{2} u-\Delta u+u=f & \text { in } \Omega \\ u=\nabla u \cdot \gamma=0 & \text { on } \partial \Omega \end{aligned}

where Ω\Omega is a bounded domain in Rn\mathbb{R}^{n} with a smooth boundary, γ\gamma is the exterior unit normal vector to Ω\partial \Omega, and fL2(Ω)f \in L^{2}(\Omega). Show (using the Lax-Milgram lemma) that the boundary value problem has a unique weak solution in the space

H02(Ω):={u:ΩR;u=uγ=0 on Ω}H_{0}^{2}(\Omega):=\{u: \Omega \rightarrow \mathbb{R} ; u=\nabla u \cdot \gamma=0 \text { on } \partial \Omega\}

[Hint. Show that

ΔuL2(Ω)2=i,j=1n2uxixjL2(Ω)2 for all uC0(Ω)\|\Delta u\|_{L^{2}(\Omega)}^{2}=\sum_{i, j=1}^{n}\left\|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right\|_{L^{2}(\Omega)}^{2} \quad \text { for all } u \in C_{0}^{\infty}(\Omega)

and then use the fact that C0(Ω)C_{0}^{\infty}(\Omega) is dense in H02(Ω).]\left.H_{0}^{2}(\Omega) .\right]