Paper 1, Section II, B

Partial Differential Equations
Part II, 2012

Let u0:RR,u0C1(R),u0(x)0u_{0}: \mathbb{R} \rightarrow \mathbb{R}, u_{0} \in C^{1}(\mathbb{R}), u_{0}(x) \geqslant 0 for all xRx \in \mathbb{R}. Consider the partial differential equation for u=u(x,y)u=u(x, y),

4yux+3uy=u2,(x,y)R24 y u_{x}+3 u_{y}=u^{2}, \quad(x, y) \in \mathbb{R}^{2}

subject to the Cauchy condition u(x,0)=u0(x)u(x, 0)=u_{0}(x).

i) Compute the solution of the Cauchy problem by the method of characteristics.

ii) Prove that the domain of definition of the solution contains

(x,y)R×(,3supxR(u0(x)))(x, y) \in \mathbb{R} \times\left(-\infty, \frac{3}{\sup _{x \in \mathbb{R}}\left(u_{0}(x)\right)}\right)