Paper 1, Section II, A

Principles of Quantum Mechanics
Part II, 2012

Let aa and aa^{\dagger} be the simple harmonic oscillator annihilation and creation operators, respectively. Write down the commutator [a,a]\left[a, a^{\dagger}\right].

Consider a new operator b=ca+sab=c a+s a^{\dagger}, where ccoshθ,ssinhθc \equiv \cosh \theta, s \equiv \sinh \theta with θ\theta a real constant. Show that

[b,b]=1\left[b, b^{\dagger}\right]=1

Consider the Hamiltonian

H=ϵaa+12λ(a2+a2),H=\epsilon a^{\dagger} a+\frac{1}{2} \lambda\left(a^{\dagger^{2}}+a^{2}\right),

where ϵ\epsilon and λ\lambda are real and such that ϵ>λ>0\epsilon>\lambda>0. Assuming that ϵcλs=Ec\epsilon c-\lambda s=E c and λcϵs=Es\lambda c-\epsilon s=E s, with EE a real constant, show that

[b,H]=Eb[b, H]=E b

Thus, calculate the energy of bEab\left|E_{a}\right\rangle in terms of EE and EaE_{a}, where EaE_{a} is an eigenvalue of HH.

Assuming that bEmin=0b\left|E_{\min }\right\rangle=0, calculate EminE_{\min } in terms of λ,s\lambda, s and cc. Find the possible values of x=s/cx=s / c. Finally, show that the energy eigenvalues of the system are

En=ϵ2+(n+12)ϵ2λ2E_{n}=-\frac{\epsilon}{2}+\left(n+\frac{1}{2}\right) \sqrt{\epsilon^{2}-\lambda^{2}}