Paper 3, Section II, H
Part II, 2012
Show that every complex representation of a finite group is equivalent to a unitary representation. Let be a character of some finite group and let . Explain why there are roots of unity such that
for all integers .
For the rest of the question let be the symmetric group on some finite set. Explain why whenever is coprime to the order of .
Prove that .
State without proof a formula for when is irreducible. Is there an irreducible character of degree at least 2 with for all ? Explain your answer.
[You may assume basic facts about the symmetric group, and about algebraic integers, without proof. You may also use without proof the fact that for any th root of unity