Paper 1, Section II, I

Riemann Surfaces
Part II, 2012

(i) Let f(z)=n=1z2nf(z)=\sum_{n=1}^{\infty} z^{2^{n}}. Show that the unit circle is the natural boundary of the function element (D(0,1),f)(D(0,1), f).

(ii) Let U={zC:Re(z)>0}CU=\{z \in \mathbf{C}: \operatorname{Re}(z)>0\} \subset \mathbf{C}; explain carefully how a holomorphic function ff may be defined on UU satisfying the equation

(f(z)21)2=z\left(f(z)^{2}-1\right)^{2}=z

Let F\mathcal{F} denote the connected component of the space of germs G\mathcal{G} (of holomorphic functions on C\{0})\mathbf{C} \backslash\{0\}) corresponding to the function element (U,f)(U, f), with associated holomorphic mapπ:FC\{0}\operatorname{map} \pi: \mathcal{F} \rightarrow \mathbf{C} \backslash\{0\}. Determine the number of points of F\mathcal{F} in π1(w)\pi^{-1}(w) when (a) w=12w=\frac{1}{2}, and (b) w=1w=1.

[You may assume any standard facts about analytic continuations that you may need.]