Paper 1, Section II, J
Consider a multi-period binomial model with a risky asset and a riskless asset . In each period, the value of the risky asset is multiplied by if the period was good, and by otherwise. The riskless asset is worth at time , where .
(i) Assuming that and that
show how any contingent claim to be paid at time 1 can be priced and exactly replicated. Briefly explain the significance of the condition (1), and indicate how the analysis of the single-period model extends to many periods.
(ii) Now suppose that . We assume that , and that the risky asset is worth at time zero. Find the time- 0 value of an American put option with strike price and expiry at time , and find the optimal exercise policy. (Assume that the option cannot be exercised immediately at time zero.)