Paper 2, Section II, F
Part II, 2012
(a) State Runge's theorem about uniform approximability of analytic functions by complex polynomials.
(b) Let be a compact subset of the complex plane.
(i) Let be an unbounded, connected subset of . Prove that for each , the function is uniformly approximable on by a sequence of complex polynomials.
[You may not use Runge's theorem without proof.]
(ii) Let be a bounded, connected component of . Prove that there is no point such that the function is uniformly approximable on by a sequence of complex polynomials.