Paper 4, Section II, B

Asymptotic Methods
Part II, 2012

The stationary Schrödinger equation in one dimension has the form

ϵ2d2ψdx2=(EV(x))ψ\epsilon^{2} \frac{d^{2} \psi}{d x^{2}}=-(E-V(x)) \psi

where ϵ\epsilon can be assumed to be small. Using the Liouville-Green method, show that two approximate solutions in a region where V(x)<EV(x)<E are

ψ(x)1(EV(x))1/4exp{±iϵcx(EV(x))1/2dx}\psi(x) \sim \frac{1}{(E-V(x))^{1 / 4}} \exp \left\{\pm \frac{i}{\epsilon} \int_{c}^{x}\left(E-V\left(x^{\prime}\right)\right)^{1 / 2} d x^{\prime}\right\}

where cc is suitably chosen.

Without deriving connection formulae in detail, describe how one obtains the condition

1ϵab(EV(x))1/2dx=(n+12)π\frac{1}{\epsilon} \int_{a}^{b}\left(E-V\left(x^{\prime}\right)\right)^{1 / 2} d x^{\prime}=\left(n+\frac{1}{2}\right) \pi

for the approximate energies EE of bound states in a smooth potential well. State the appropriate values of a,ba, b and nn.

Estimate the range of nn for which ()(*) gives a good approximation to the true bound state energies in the cases

(i) V(x)=xV(x)=|x|,

(ii) V(x)=x2+λx6V(x)=x^{2}+\lambda x^{6} with λ\lambda small and positive,

(iii) V(x)=x2λx6V(x)=x^{2}-\lambda x^{6} with λ\lambda small and positive.