Paper 2, Section II, I

Algebraic Geometry
Part II, 2012

Let kk be a field, JJ an ideal of k[x1,,xn]k\left[x_{1}, \ldots, x_{n}\right], and let R=k[x1,,xn]/JR=k\left[x_{1}, \ldots, x_{n}\right] / J. Define the radical J\sqrt{J} of JJ and show that it is also an ideal.

The Nullstellensatz says that if JJ is a maximal ideal, then the inclusion kRk \subseteq R is an algebraic extension of fields. Suppose from now on that kk is algebraically closed. Assuming the above statement of the Nullstellensatz, prove the following.

(i) If JJ is a maximal ideal, then J=(x1a1,,xnan)J=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right), for some (a1,,an)kn\left(a_{1}, \ldots, a_{n}\right) \in k^{n}.

(ii) If Jk[x1,,xn]J \neq k\left[x_{1}, \ldots, x_{n}\right], then Z(J)Z(J) \neq \emptyset, where

Z(J)={aknf(a)=0 for all fJ}Z(J)=\left\{a \in k^{n} \mid f(a)=0 \text { for all } f \in J\right\}

(iii) For VV an affine subvariety of knk^{n}, we set

I(V)={fk[x1,,xn]f(a)=0 for all aV}I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f(a)=0 \text { for all } a \in V\right\}

Prove that J=I(V)J=I(V) for some affine subvariety VknV \subseteq k^{n}, if and only if J=JJ=\sqrt{J}.

[Hint. Given fJf \in J, you may wish to consider the ideal in k[x1,,xn,y]k\left[x_{1}, \ldots, x_{n}, y\right] generated byJb y J and yf1y f-1.]

(iv) If AA is a finitely generated algebra over kk, and AA does not contain nilpotent elements, then there is an affine variety VknV \subseteq k^{n}, for some nn, with A=k[x1,,xn]/I(V)A=k\left[x_{1}, \ldots, x_{n}\right] / I(V).

Assuming char(k)2\operatorname{char}(k) \neq 2, find J\sqrt{J} when JJ is the ideal (x(xy)2,y(x+y)2)\left(x(x-y)^{2}, y(x+y)^{2}\right) in k[x,y]k[x, y].