Paper 3, Section I, A

Classical Dynamics
Part II, 2012

The motion of a particle of charge qq and mass mm in an electromagnetic field with scalar potential ϕ(r,t)\phi(\mathbf{r}, t) and vector potential A(r,t)\mathbf{A}(\mathbf{r}, t) is characterized by the Lagrangian

L=mr˙22q(ϕr˙A)L=\frac{m \dot{\mathbf{r}}^{2}}{2}-q(\phi-\dot{\mathbf{r}} \cdot \mathbf{A})

(a) Show that the Euler-Lagrange equation is invariant under the gauge transformation

ϕϕΛt,AA+Λ\phi \rightarrow \phi-\frac{\partial \Lambda}{\partial t}, \quad \mathbf{A} \rightarrow \mathbf{A}+\nabla \Lambda

for an arbitrary function Λ(r,t)\Lambda(\mathbf{r}, t).

(b) Derive the equations of motion in terms of the electric and magnetic fields E(r,t)\mathbf{E}(\mathbf{r}, t) and B(r,t)\mathbf{B}(\mathbf{r}, t).

[Recall that B=×A\mathbf{B}=\nabla \times \mathbf{A} and E=ϕAt\mathbf{E}=-\nabla \phi-\frac{\partial \mathbf{A}}{\partial t}.]