Paper 1, Section I, A
Part II, 2012
Consider a heavy symmetric top of mass , pinned at point , which is a distance from the centre of mass.
(a) Working in the body frame (where is the symmetry axis of the top) define the Euler angles and show that the components of the angular velocity can be expressed in terms of the Euler angles as
(b) Write down the Lagrangian of the top in terms of the Euler angles and the principal moments of inertia .
(c) Find the three constants of motion.