Paper 4, Section I, E

Cosmology
Part II, 2012

The number density of a species \star of non-relativistic particles of mass mm, in equilibrium at temperature TT and chemical potential μ\mu, is

n=g(2πmkTh2)3/2e(μmc2)/kT,n_{\star}=g_{\star}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} e^{\left(\mu-m c^{2}\right) / k T},

where gg_{\star} is the spin degeneracy. During primordial nucleosynthesis, deuterium, DD, forms through the nuclear reaction

p+nD,p+n \leftrightarrow D,

where pp and nn are non-relativistic protons and neutrons. Write down the relationship between the chemical potentials in equilibrium.

Using the fact that gD=4g_{D}=4, and explaining the approximations you make, show that

nDnnnp(h2πmpkT)3/2exp(BDkT)\frac{n_{D}}{n_{n} n_{p}} \approx\left(\frac{h^{2}}{\pi m_{p} k T}\right)^{3 / 2} \exp \left(\frac{B_{D}}{k T}\right)

where BDB_{D} is the deuterium binding energy, i.e. BD=(mn+mpmD)c2B_{D}=\left(m_{n}+m_{p}-m_{D}\right) c^{2}.

Let X=n/nBX_{\star}=n_{\star} / n_{B} where nBn_{B} is the baryon number density of the universe. Using the fact that nγT3n_{\gamma} \propto T^{3}, show that

XDXnXpT3/2ηexp(BDkT)\frac{X_{D}}{X_{n} X_{p}} \propto T^{3 / 2} \eta \exp \left(\frac{B_{D}}{k T}\right)

where η\eta is the baryon asymmetry parameter

η=nBnγ\eta=\frac{n_{B}}{n_{\gamma}}

Briefly explain why primordial deuterium does not form until temperatures well below kTBDk T \sim B_{D}.