Paper 2, Section I, E

Cosmology
Part II, 2012

The Friedmann equation for the scale factor a(t)a(t) of a homogeneous and isotropic universe of mass density ρ\rho is

H2=8πGρ3kc2a2,(H=a˙a)H^{2}=\frac{8 \pi G \rho}{3}-\frac{k c^{2}}{a^{2}}, \quad\left(H=\frac{\dot{a}}{a}\right)

where a˙=da/dt\dot{a}=d a / d t and kk is a constant. The mass conservation equation for a fluid of mass density ρ\rho and pressure PP is

ρ˙=3(ρ+P/c2)H\dot{\rho}=-3\left(\rho+P / c^{2}\right) H

Conformal time τ\tau is defined by dτ=a1dtd \tau=a^{-1} d t. Show that

H=aH,(H=aa)\mathcal{H}=a H, \quad\left(\mathcal{H}=\frac{a^{\prime}}{a}\right)

where a=da/dτa^{\prime}=d a / d \tau. Hence show that the acceleration equation can be written as

H=4π3G(ρ+3P/c2)a2\mathcal{H}^{\prime}=-\frac{4 \pi}{3} G\left(\rho+3 P / c^{2}\right) a^{2}

Define the density parameter Ωm\Omega_{m} and show that in a matter-dominated era, in which P=0P=0, it satisfies the equation

Ωm=HΩm(Ωm1)\Omega_{m}^{\prime}=\mathcal{H} \Omega_{m}\left(\Omega_{m}-1\right)

Use this result to briefly explain the "flatness problem" of cosmology.