Paper 1, Section I, 7D7 \mathrm{D}

Dynamical Systems
Part II, 2012

State the Poincaré-Bendixson theorem.

A model of a chemical process obeys the second-order system

x˙=1x(1+a)+x2y,y˙=axx2y\dot{x}=1-x(1+a)+x^{2} y, \quad \dot{y}=a x-x^{2} y

where a>0a>0. Show that there is a unique fixed point at (x,y)=(1,a)(x, y)=(1, a) and that it is unstable if a>2a>2. Show that trajectories enter the region bounded by the lines x=1/qx=1 / q, y=0,y=aqy=0, y=a q and x+y=1+aqx+y=1+a q, provided q>(1+a)q>(1+a). Deduce that there is a periodic orbit when a>2a>2.