Paper 2, Section II, C
Part II, 2012
An incompressible viscous liquid occupies the long thin region for , where with and . The top boundary at is rigid and stationary. The bottom boundary at is rigid and moving at velocity . Fluid can move in and out of the ends and , where the pressure is the same, namely .
Explaining the approximations of lubrication theory as you use them, find the velocity profile in the long thin region, and show that the volume flux (per unit width in the -direction) is
Find also the value of (i) where the pressure is maximum, (ii) where the tangential viscous stress on the bottom vanishes, and (iii) where the tangential viscous stress on the top vanishes.