Paper 3, Section I, E

Further Complex Methods
Part II, 2012

The Beta function, denoted by B(z1,z2)B\left(z_{1}, z_{2}\right), is defined by

B(z1,z2)=Γ(z1)Γ(z2)Γ(z1+z2),z1,z2CB\left(z_{1}, z_{2}\right)=\frac{\Gamma\left(z_{1}\right) \Gamma\left(z_{2}\right)}{\Gamma\left(z_{1}+z_{2}\right)}, \quad z_{1}, z_{2} \in \mathbb{C}

where Γ(z)\Gamma(z) denotes the Gamma function. It can be shown that

B(z1,z2)=0vz21dv(1+v)z1+z2,Rez1>0,Rez2>0B\left(z_{1}, z_{2}\right)=\int_{0}^{\infty} \frac{v^{z_{2}-1} d v}{(1+v)^{z_{1}+z_{2}}}, \quad \operatorname{Re} z_{1}>0, \operatorname{Re} z_{2}>0

By computing this integral for the particular case of z1+z2=1z_{1}+z_{2}=1, and by employing analytic continuation, deduce that Γ(z)\Gamma(z) satisfies the functional equation

Γ(z)Γ(1z)=πsinπz,zC.\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}, \quad z \in \mathbb{C} .