Paper 1, Section I, E

Further Complex Methods
Part II, 2012

Recall that if f(z)f(z) is analytic in a neighbourhood of z00z_{0} \neq 0, then

f(z)+f(z0)=2u(z+z02,zz02i)f(z)+\overline{f\left(z_{0}\right)}=2 u\left(\frac{z+\overline{z_{0}}}{2}, \frac{z-\overline{z_{0}}}{2 i}\right)

where u(x,y)u(x, y) is the real part of f(z)f(z). Use this fact to construct the imaginary part of an analytic function whose real part is given by

u(x,y)=yg(t)dt(tx)2+y2,x,yR,y0u(x, y)=y \int_{-\infty}^{\infty} \frac{g(t) d t}{(t-x)^{2}+y^{2}}, \quad x, y \in \mathbb{R}, y \neq 0

where g(t)g(t) is real and has sufficient smoothness and decay.