Paper 1, Section II, E

Further Complex Methods
Part II, 2012

(a) Suppose that F(z),z=x+iy,x,yRF(z), z=x+i y, x, y \in \mathbb{R}, is analytic in the upper-half complex zz-plane and O(1/z)O(1 / z) as z,y0z \rightarrow \infty, y \geqslant 0. Show that the real and imaginary parts of F(x)F(x), denoted by U(x)U(x) and V(x)V(x) respectively, satisfy the so-called Kramers-Kronig formulae:

U(x)=HV(x),V(x)=HU(x),xR.U(x)=H V(x), \quad V(x)=-H U(x), \quad x \in \mathbb{R} .

Here, HH denotes the Hilbert transform, i.e.,

(Hf)(x)=1πPVf(ξ)ξxdξ(H f)(x)=\frac{1}{\pi} \mathrm{PV} \int_{-\infty}^{\infty} \frac{f(\xi)}{\xi-x} d \xi

where PV\mathrm{PV} denotes the principal value integral.

(b) Let the real function u(x,y)u(x, y) satisfy the Laplace equation in the upper-half complex z-plane, i.e.,

2u(x,y)x2+2u(x,y)y2=0,<x<,y>0\frac{\partial^{2} u(x, y)}{\partial x^{2}}+\frac{\partial^{2} u(x, y)}{\partial y^{2}}=0, \quad-\infty<x<\infty, \quad y>0

Assuming that u(x,y)u(x, y) decays for large x|x| and for large yy, show that F=uzF=u_{z} is an analytic function for Imz>0,z=x+iy\operatorname{Im} z>0, z=x+i y. Then, find an expression for uy(x,0)u_{y}(x, 0) in terms of ux(x,0)u_{x}(x, 0).