Paper 4, Section II, H

Galois Theory
Part II, 2012

Let F=C(X1,,Xn)F=\mathbb{C}\left(X_{1}, \ldots, X_{n}\right) be a field of rational functions in nn variables over C\mathbb{C}, and let s1,,sns_{1}, \ldots, s_{n} be the elementary symmetric polynomials:

sj:={i1,,ij}{1,,n}Xi1XijF(1jn),s_{j}:=\sum_{\left\{i_{1}, \ldots, i_{j}\right\} \subset\{1, \ldots, n\}} X_{i_{1}} \cdots X_{i_{j}} \in F \quad(1 \leqslant j \leqslant n),

and let K=C(s1,,sn)K=\mathbb{C}\left(s_{1}, \ldots, s_{n}\right) be the subfield of FF generated by s1,,sns_{1}, \ldots, s_{n}. Let 1mn1 \leqslant m \leqslant n, and Y:=X1++XmFY:=X_{1}+\cdots+X_{m} \in F. Let K(Y)K(Y) be the subfield of FF generated by YY over KK. Find the degree [K(Y):K][K(Y): K].

[Standard facts about the fields F,KF, K and Galois extensions can be quoted without proof, as long as they are clearly stated.]