Paper 4, Section II, B

General Relativity
Part II, 2012

The metric for a homogenous isotropic universe, in comoving coordinates, can be written as

ds2=dt2+a2{dr2+f2[dθ2+sin2θdϕ2]}d s^{2}=-d t^{2}+a^{2}\left\{d r^{2}+f^{2}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right]\right\}

where a=a(t)a=a(t) and f=f(r)f=f(r) are some functions.

Write down expressions for the Hubble parameter HH and the deceleration parameter qq in terms of a(η)a(\eta) and hdloga/dηh \equiv d \log a / d \eta, where η\eta is conformal time, defined by dη=a1dtd \eta=a^{-1} d t.

The universe is composed of a perfect fluid of density ρ\rho and pressure p=(γ1)ρp=(\gamma-1) \rho, where γ\gamma is a constant. Defining Ω=ρ/ρc\Omega=\rho / \rho_{c}, where ρc=3H2/8πG\rho_{c}=3 H^{2} / 8 \pi G, show that

kh2=Ω1,q=αΩ,dΩdη=2qh(Ω1)\frac{k}{h^{2}}=\Omega-1, \quad q=\alpha \Omega, \quad \frac{d \Omega}{d \eta}=2 q h(\Omega-1)

where kk is the curvature parameter (k=+1,0(k=+1,0 or 1)-1) and α12(3γ2)\alpha \equiv \frac{1}{2}(3 \gamma-2). Hence deduce that

dΩda=2αaΩ(Ω1)\frac{d \Omega}{d a}=\frac{2 \alpha}{a} \Omega(\Omega-1)

and

Ω=11Aa2α\Omega=\frac{1}{1-A a^{2 \alpha}}

where AA is a constant. Given that A=k2GMA=\frac{k}{2 G M}, sketch curves of Ω\Omega against aa in the case when γ>2/3\gamma>2 / 3.

[You may assume an Einstein equation, for the given metric, in the form

h2a2+ka2=83πGρ\frac{h^{2}}{a^{2}}+\frac{k}{a^{2}}=\frac{8}{3} \pi G \rho

and the energy conservation equation

dρdt+3H(ρ+p)=0.]\left.\frac{d \rho}{d t}+3 H(\rho+p)=0 .\right]