Paper 2, Section II, B

General Relativity
Part II, 2012

The metric of any two-dimensional rotationally-symmetric curved space can be written in terms of polar coordinates, (r,θ)(r, \theta), with 0θ<2π,r00 \leqslant \theta<2 \pi, r \geqslant 0, as

ds2=e2ϕ(dr2+r2dθ2)d s^{2}=e^{2 \phi}\left(d r^{2}+r^{2} d \theta^{2}\right)

where ϕ=ϕ(r)\phi=\phi(r). Show that the Christoffel symbols Γrθr,Γrrθ\Gamma_{r \theta}^{r}, \Gamma_{r r}^{\theta} and Γθθθ\Gamma_{\theta \theta}^{\theta} are each zero, and compute Γrrr,Γθθr\Gamma_{r r}^{r}, \Gamma_{\theta \theta}^{r} and Γrθθ=Γθrθ\Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}.

The Ricci tensor is defined by

Rab=Γab,ccΓac,bc+ΓcdcΓabdΓacdΓbdcR_{a b}=\Gamma_{a b, c}^{c}-\Gamma_{a c, b}^{c}+\Gamma_{c d}^{c} \Gamma_{a b}^{d}-\Gamma_{a c}^{d} \Gamma_{b d}^{c}

where a comma here denotes partial derivative. Prove that Rrθ=0R_{r \theta}=0 and that

Rrr=ϕϕr,Rθθ=r2RrrR_{r r}=-\phi^{\prime \prime}-\frac{\phi^{\prime}}{r}, \quad R_{\theta \theta}=r^{2} R_{r r}

Suppose now that, in this space, the Ricci scalar takes the constant value 2-2. Find a differential equation for ϕ(r)\phi(r).

By a suitable coordinate transformation rχ(r),θr \rightarrow \chi(r), \theta unchanged, this space of constant Ricci scalar can be described by the metric

ds2=dχ2+sinh2χdθ2d s^{2}=d \chi^{2}+\sinh ^{2} \chi d \theta^{2}

From this coordinate transformation, find coshχ\cosh \chi and sinhχ\sinh \chi in terms of rr. Deduce that

eϕ(r)=2A1A2r2,e^{\phi(r)}=\frac{2 A}{1-A^{2} r^{2}},

where 0Ar<10 \leqslant A r<1, and AA is a positive constant.

[You may use

dχsinhχ=12log(coshχ1)12log(coshχ+1)+ constant .]\left.\int \frac{d \chi}{\sinh \chi}=\frac{1}{2} \log (\cosh \chi-1)-\frac{1}{2} \log (\cosh \chi+1)+\text { constant } .\right]