Paper 3, Section II, 37B

General Relativity
Part II, 2012

(i) The Schwarzschild metric is given by

ds2=(12Mr)dt2+(12Mr)1dr2+r2(dθ2+sin2θdϕ2)d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)

Consider a time-like geodesic xa(τ)x^{a}(\tau), where τ\tau is the proper time, lying in the plane θ=π/2\theta=\pi / 2. Use the Lagrangian L=gabx˙ax˙bL=g_{a b} \dot{x}^{a} \dot{x}^{b} to derive the equations governing the geodesic, showing that

r2ϕ˙=hr^{2} \dot{\phi}=h

with hh constant, and hence demonstrate that

d2udϕ2+u=Mh2+3Mu2\frac{d^{2} u}{d \phi^{2}}+u=\frac{M}{h^{2}}+3 M u^{2}

where u=1/ru=1 / r. State which term in this equation makes it different from an analogous equation in Newtonian theory.

(ii) Now consider Kruskal coordinates, in which the Schwarzschild tt and rr are replaced by UU and VV, defined for r>2Mr>2 M by

U(r2M1)1/2er/(4M)cosh(t4M)V(r2M1)1/2er/(4M)sinh(t4M)\begin{aligned} &U \equiv\left(\frac{r}{2 M}-1\right)^{1 / 2} e^{r /(4 M)} \cosh \left(\frac{t}{4 M}\right) \\ &V \equiv\left(\frac{r}{2 M}-1\right)^{1 / 2} e^{r /(4 M)} \sinh \left(\frac{t}{4 M}\right) \end{aligned}

and for r<2Mr<2 M by

U(1r2M)1/2er/(4M)sinh(t4M)V(1r2M)1/2er/(4M)cosh(t4M)\begin{aligned} &U \equiv\left(1-\frac{r}{2 M}\right)^{1 / 2} e^{r /(4 M)} \sinh \left(\frac{t}{4 M}\right) \\ &V \equiv\left(1-\frac{r}{2 M}\right)^{1 / 2} e^{r /(4 M)} \cosh \left(\frac{t}{4 M}\right) \end{aligned}

Given that the metric in these coordinates is

ds2=32M3rer/(2M)(dV2+dU2)+r2(dθ2+sin2θdϕ2),d s^{2}=\frac{32 M^{3}}{r} e^{-r /(2 M)}\left(-d V^{2}+d U^{2}\right)+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),

where r=r(U,V)r=r(U, V) is defined implicitly by

(r2M1)er/(2M)=U2V2\left(\frac{r}{2 M}-1\right) e^{r /(2 M)}=U^{2}-V^{2}

sketch the Kruskal diagram, indicating the positions of the singularity at r=0r=0, the event horizon at r=2Mr=2 M, and general lines of constant rr and of constant tt.