Paper 3, Section II, 17 F17 \mathrm{~F}

Graph Theory
Part II, 2012

Let HH be a graph with at least one edge. Define ex (n;H)(n ; H), where nn is an integer with nHn \geqslant|H|. Without assuming the Erdős-Stone theorem, show that the sequence ex(n;H)/(n2)\operatorname{ex}(n ; H) /\left(\begin{array}{l}n \\ 2\end{array}\right) converges as nn \rightarrow \infty.

State precisely the Erdős-Stone theorem. Hence determine, with justification, limnex(n;H)/(n2).\lim _{n \rightarrow \infty} \operatorname{ex}(n ; H) /\left(\begin{array}{c}n \\ 2\end{array}\right) .

Let KK be another graph with at least one edge. For each integer nn such that nmax{H,K}n \geqslant \max \{|H|,|K|\}, let

f(n)=max{e(G):G=n;H⊄G and K⊄G}f(n)=\max \{e(G):|G|=n ; H \not \subset G \text { and } K \not \subset G\}

and let

g(n)=max{e(G):G=n;H⊄G or K⊄G}.g(n)=\max \{e(G):|G|=n ; H \not \subset G \text { or } K \not \subset G\} .

Find, with justification, limnf(n)/(n2)\lim _{n \rightarrow \infty} f(n) /\left(\begin{array}{l}n \\ 2\end{array}\right) and limng(n)/(n2)\lim _{n \rightarrow \infty} g(n) /\left(\begin{array}{l}n \\ 2\end{array}\right).