Paper 1, Section II, F

Graph Theory
Part II, 2012

State Markov's inequality and Chebyshev's inequality.

Let G(2)(n,p)\mathcal{G}^{(2)}(n, p) denote the probability space of bipartite graphs with vertex classes U={1,2,,n}U=\{1,2, \ldots, n\} and V={1,2,,n}V=\{-1,-2, \ldots,-n\}, with each possible edge uv(uU,u v(u \in U,, vV)v \in V) present, independently, with probability pp. Let XX be the number of subgraphs of GG(2)(n,p)G \in \mathcal{G}^{(2)}(n, p) that are isomorphic to the complete bipartite graph K2,2K_{2,2}. Write down EX\mathbb{E} X and Var(X)\operatorname{Var}(X). Hence show that p=1/np=1 / n is a threshold for GG(2)(n,p)G \in \mathcal{G}^{(2)}(n, p) to contain K2,2K_{2,2}, in the sense that if npn p \rightarrow \infty then a. e. GG(2)(n,p)G \in \mathcal{G}^{(2)}(n, p) contains a K2,2K_{2,2}, whereas if np0n p \rightarrow 0 then a. e. GG(2)(n,p)G \in \mathcal{G}^{(2)}(n, p) does not contain a K2,2K_{2,2}.

By modifying a random GG(2)(n,p)G \in \mathcal{G}^{(2)}(n, p) for suitably chosen pp, show that, for each nn, there exists a bipartite graph HH with nn vertices in each class such that K2,2⊄HK_{2,2} \not \subset H but e(H)34(nn13)2.e(H) \geqslant \frac{3}{4}\left(\frac{n}{\sqrt[3]{n-1}}\right)^{2} .